Topological and geometric hyperbolicity criteria for polynomial automorphisms of

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Filtrations, hyperbolicity and dimension for polynomial automorphisms

In this paper we study the dynamics of regular polynomial automorphisms of C. These maps provide a natural generalization of complex Hénon maps in C to higher dimensions. For a given regular polynomial automorphism f we construct a filtration in C which has particular escape properties for the orbits of f . In the case when f is hyperbolic we obtain a complete description of its orbits. In the ...

متن کامل

Hausdorff and topological dimension for polynomial automorphisms of C

Let g be a polynomial automorphism of C. We study the dimensions (Hausdorff dimension and topological dimension) of the Julia set of g. We show that when g is a hyperbolic mapping, then the Hausdorff dimension of the Julia set is strictly greater than its topological dimension. Moreover, the Julia set cannot be locally connected. We also provide estimates for the dimension of the Julia sets in ...

متن کامل

Hyperbolicity of geometric orbifolds

We study complex hyperbolicity in the setting of geometric orbifolds introduced by F. Campana. Generalizing classical methods to this context, we obtain degeneracy statements for entire curves with ramification in situations where no Second Main Theorem is known from value distribution theory.

متن کامل

Hyperbolicity Criteria for Certain Involutions

Using the ideas and techniques developed by Bayer-Fluckiger, Shapiro and Tignol about hyperbolic involutions of central simple algebras, criteria for the hyperbolicity of involutions of the form σ⊗ τ and σ⊗ ρ, where σ is an involution of a central simple algebra A, τ is the nontrivial automorphism of a quadratic extension of the center of A and ρ is an involution of a quaternion algebra are obt...

متن کامل

M-polynomial and degree-based topological indices

Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2021

ISSN: 0143-3857,1469-4417

DOI: 10.1017/etds.2021.47